rsync --link-dest

Local, rotated, quick and useful backups!

arse-ink --link-dest

Local, rotated, quick and useful BACKups!

(Baby got Back ups?)

Scope

* No complete scripts will be presented

* Just enough so that a competent scripter will be
able to build what they need

* Unixes used: OpenBSD, FreeBSD, Solaris, AlX,
Linux. Should work on anything rsync runs on.

Simple RSYNC backups

From backup sources to central disk storage
Coples over what changed.

Copies over just the PARTS that change
(after first backup) VERY fast and efficient.
BUT...

Not rotated. No archive. BARELY counts as a
backup.

NOT OUR TOPIC TODAY. :)

Crash review: hard linked files

_ /home/you/Filenamel.txt
/home/me/Filenamel.txt

/home/me/Another.txt

* Three directory entries on same file system, File
only ONE file on disk.

* All hard links are equal.

* File exists until LAST link is removed.

* Again...all links are equal.

Better rsync backup — with hard links

* Create new directory for new backup.

* Hard link everything in old directory to new
directory, duplicating directory tree structure.

* Rsync from target system to backup system’s
new directory

* Unchanged files stay a link, changed files get
overwritten, but previous copies remain.

Even better yet --link-dest !!

* Three way rsync — Source, PREVIOUS copy,
NEW copy.

* New files: copied over.

* Unchanged files: hard link from --link-dest
directory (I

* Changed files — Copied over (but with rsync
bandwidth usage)

rsync w/links

Backup 1 (full!) Backup 2

Benefits

Rotated! History!

Minimal disk use, minimal network traffic

EVERY backup is “full”, but as fast as an incremental!
WONDERFULLY USEFUL as it sits on the backup server.
 Communications over SSH, automatic key logon.

Backup client? rsync! ANY version

Restore client? rsync, scp, vi, whatever.

Backup systems that your “primary” backup solution
doesn’t recoginize

* MORE THAN JUST A BACKUP.

Down-sides

(you knew there had to be some)

* No geographic diversity

* File ownership, permissions CAN be munged.

* Root access needed to systems being backed up.
* Not a “bare metal” restore.

* Best for restoring data and config files

* End up with some complicated file systems.

* MS Windows.

» A failed backup can really balloon your disk needs.
* du ... not fast. Not at all fast.

Not just backups. This is Unix!

Assuming /bu/<machname>/<date>/

* Which systems is nholland on?
grep nholland /bu/*/2016-08-23/etc/passwd

* When did nholland’s account get created?
grep nholland /bu/fs3/*/etc/passwd

* How’s the database dump growing?
ls -1 /bu/fs3/*/db/dumpfile.txt

* Any time you have a guestion about all machines...
* File change detection (IDS)?
* Change ownership/permissions (non-root analysis).
« Systems doing self-backups

Doing It.

* “Projects” exist. So what.

* Rsync {-options} --link-dest {prevbu} {source}
{newbu}

* Date your backups (yyyy-mm-dd)
 Maybe most recent as “curr’?
e Sortable naming
* M-yyyy-mm-dd for monthly?

* Pre-create backup directories (2000-00-00,
2000-00-01, 2000-00-02, etc).

Doing It (part 2)

Create new backup dir.
Make backup between source, previous, and new

Delete oldest afterwards — keeps a constant number of
backups.

Want to “pull” a backup out of rotation? Rename it!
Create new replacement. (note: “cost” will increase
with time)

Save output of rsync to a file — backup log.
Create backup reports from the rsync log files.

Doing It...part 3

Chunk your data. Even though you don’t want to.
Symlink from /bu to actual storage spaces

Watch your free space carefully. Don’t run out.
Know what your ‘du’ command does with hard links.

Use otherwise “wasted” space — local disk on VM
hosts.

Test your restores.
Beware of reversing trust.

Doing it ... part 4

* One script to run the job — “bu”

e Second script to grab the output from automatic runs —
“bucron”

* Run just the specified job? — or —
* Run all jobs in specified directory?

* pgrep | wc -l your rsyncs, hold off until there are fewer
than X running (20 to 30?)

* head, tail, basename, dirname, df, du, grep are your
friends.

Rsync options
(beyond --link-dest)

-a (you want this. Covers a lot of things)
-H (Preserver hard links. Probably)
--stats (Summary statistics. For report)
--progress (eh. Maybe not.)
--force
-z (Compress — varies depending on use)

rsync option --exclude-file

* Some things, you don’'t want backed up. Ever.

* Syntax Is somewhere between tricky, black
magic and just broken.

e Start with a default, then add to it as needed.

+ /
- /mnt

- /proc

- /tmp

- /ramtmp
- /dev

- /SYS

Hardware

Very modest, unless you have a lot of local, high-speed
systems.

Lots of cheap but redundant disk storage.

Slow CPU on backup system may reduce load on
machines being backed up.

Compression may or may not improve overall performance.

Memory — usually determined by file system, not rsync
tasks

1 core, 1G RAM is often more than sufficient.

Lessons

* DO NOT run AV on the system.

* --link-dest need only be on the BU system; not
the host being backed up.

* |f backing up the backups to tape, beware
massive numbers of hard links. And be ready
for iIssues on restore.

* Disk redundancy on your backup system

FreeBSD/ZFS variant

Each system gets its own ZFS partition.
df shows all!

No --link-dest, use ZFS snapshots

ZFS SEND snapshots to another machine
* Destination MUST be “Read Only”
 atime is not your friend.

Good luck. You may need it. Found to be about as
stable as a pig on stilts (granted...vmware, insufficient
RAM, insufficient “tuning”.)

Questions? Comments?
Sarcastic Remarks?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

